IA Logo


IA Information
Communication

Dave Mark's books

IA on AI


What Real Wolves Can Teach Us about Our AI

An article was recently brought to my attention. The first one I looked at was Wolves May Not Need to be Smart to Hunt in Packs from Discover Magazine. However, it was originally from New Scientist it seems. Both of them cite a couple of other papers via links in their respective articles. You can get the gist of what they are talking about from the text of the article, however.

The point is, they have discovered that the complex(-looking) pack hunting behaviors of wolves are actually not as complex and joined as we thought. With just a few very simple autonomous rules, they have duplicated this style of attack behavior in simulations. Specifically,

Using a computer model, researchers had each virtual “wolf” follow two rules: (1) move towards the prey until a certain distance is reached, and (2) when other wolves are close to the prey, move away from them. These rules cause the pack members to behave in a way that resembles real wolves, circling up around the animal, and when the prey tries to make a break for it, one wolf sometimes circles around and sets up an ambush, no communication required.

The comment that brought it to my attention was that biologists “discover” something that AI programmers have known for decades — the idea of flocking. Going back to Craig Reynolds seminal Boids research (from the 1980’s), we as AI programmers have known that simple rules can not only generate the look of complex behavior but that much of the complex behavior that exists in the world is actually the result of the same “simple rule” model. Even down to the cellular level in the human body — namely the human immune system — autonomous cellular behavior is driven by this mentality.

The key takeaway from this “revelation” about the wolves is not so much that wolves are not as clever as we thought, but rather that there is now legitimacy to using simpler AI techniques to generate emergent behavior. We aren’t “cheating” or cutting corners by using a simple rule-based flocking-like system to do our animal AI… we are, indeed, actually replicating what those animals are doing in the first place.

We could likely get far more mileage out of these techniques in the game space were it not for one major block — the trepidation that many developers feel about emergent behavior. For designers in particular, emergent behavior stemming from autonomous agents means giving up a level of authorial control. While authorial control is necessary and desired in some aspects of game design, there are plenty of places where it is not. By swearing off emergent AI techniques, we may be unnecessarily limiting ourselves and preventing a level of organic depth to our characters and, indeed, our game world.

Incidentally, emergent AI is not simply limited to the simple flocking-style rule-based systems that we are familiar with and that are discussed with regards to the wolves. Full-blown utility-based systems such as those that I talk about in my book are just an extension of this. The point being, we aren’t specifically scripting the behavior but rather defining meanings and relationships. The behavior naturally falls out of those rules. The Sims franchise is known for this. As a result, many people are simply fascinated to sit back and watch things unfold without intervention. The characters not only look like they are “doing their own thing” but also look like they are operating together in a community… just like the wolves are acting on their own and working as part of a team.

So take heart, my AI programmer friends and colleagues. Academic biologists may only now be getting the idea — but we’ve been heading down the right track for quite some time now. We just need to feel better about doing it!

Tags: , , , , , ,



One Response to “What Real Wolves Can Teach Us about Our AI”

  1. Anonymous natures says:

    The programmers do not understand how wolves hunt. They run and test the prey to see if it is weak. Their purpose is to get the prey on the run, which makes the herbivore less dangerous. The “circling” is to scare the herbivore so it looses it’s nerve and runs. When the prey is on the run, the wolves chases it. The older wolves might let the younger wolves hunt and retreats, or the other way around with the younger wolves observing how the older wolves hunt. If the prey is a bull elk, some wolves will distract the bull elk in the front while the others bites it from behind. It is important for a wolf to learn to not attack the prey from the front, but from behind. Younger wolves might make the mistake of taking the herbivore from the front, and therefore, getting hurt. Wolves will also observe the tracks of herbivores around them to see if they are sick or injured. They will also look at the leaves that the prey has eaten to determine their health.

Leave a Reply

Add to Google Reader or Homepage

Latest blog posts:

IA News

IA on AI

Post-Play'em




Content 2002-2010 by Intrinsic Algorithm L.L.C.

OGDA